Multi-scale Lattice Field Theory Algorithms—Preparing for Exascale

Richard Brower USQCD Software Director (Boston University)

(Collaborators: Kate Clark (NVIDIA), Michael Cheng (BU) Arjun Gambir (W&M) Balint Joo (Jlab), Alexei Strelchenko (FNAL)

S2-S2I: Scalable Hierarchical Algorithms for Extreme Computing (SHARE) goal is to developing and implementing fast “adaptive multi-level solvers targeting multiple GPUs.”

Problem: LHC: p + p -> “Higgs” + QCD stuff [1]

Multi-scale Physics \(\rightarrow\) Multilevel Solvers

QFE: Quantum Finite Element Methods [6-7]

Target Heterogeneous: IMB/NVIDIA (GPU) or Cray/Intel(Phi)

Accelerated Computing

5x Higher Energy Efficiency

“QCD on CUDA” – http://lattice.github.com/quda

Adaptive Smooth Aggregation Multigrid

Multi-scale Physics \(\rightarrow\) Multilevel Solvers

References

1. SciDAC-3 HEP: Searching for Physics Beyond the Standard Model: Strongly-Coupled Field Theories at the Intensity and Energy Frontiers
4. R. Babich, M. Clark, M. Cheng, Adaptive Multigrid Solvers for LGCD on GPUs, Lattice 20
6. R. Brower , G. T. Fleming, A. Gasbarro, T. Raben, C-I Tan and E. Weinberge, Quantum Finite Elements for Lattice Field Theory, Lattice 2015

GPU technology + MG \(\rightarrow\) Reduces $ cost by over a factor of 1/100.

Mixed precision with reliable updates

Using a mixed-precision solver incorporating “reliable updates” (Clark et al., arXiv:0911.3191) with half precision greatly reduces time-to-solution while maintaining double precision accuracy.

Hierarchical algorithms on heterogeneous architectures

MG on Accelerators

Coarse Grid Operator Performance

QFEM: Barrows ideas from FEM for PDEs and Regge Calculus [7] for Quantum Gravity to renormalize and simulate Quantum Fields on Curved Manifolds

Industry Collaboration: NVIDIA

NVIDIA has hired two former BU Doctoral Fellows:
Mike Clark leading the QUDA project (code design and new algorithms)
Ron Babich evaluates future architectures for QCD kernels (cache size, memory latency, bandwidth etc.) Rich Brower is a NVIDIA CUDA Fellow