SI2-SSE Collaborative Research: Molecular simulations for polymer composites in the cloud

Pls: Alejandro Strachan (Purdue) Coray Colina (Penn State)

CoPIs: Benjamin Haley, Chunyu Li

Graduate students: Michael Fortunato, Lorena Alzate

NSF GRANT ACI 1440727

Approach and goals

GOAL: enable pervasive, high-quality molecular simulations of polymers and their nanostructures

- Develop a framework for molecular simulations of polymers and their nanostructures, universally accessible and useful to the community for cloud computing via NSF’s nanoHUB.
- 1. Powerful simulation tools for polymer nanostructures (molecular builders, a parallel MD engine for property characterization and post-processing);
- 2. A UQ framework to orchestrate the molecular simulations and propagate uncertainties in input parameters to predictions and compare the predictions to experimental values;
- 3. Databases of force fields and molecular structures as well as predicted and experimental properties.

Cloud computing via NSF nanoHUB

- **Online simulations using simply a web-browser:**
 - Go to: https://nanohub.org/tools
 - No need to download or install any software
 - Use NSF's computing resources at Purdue for large-scale parallel jobs

Step 1: Build polymer structure

PolymerModeler tool

Step 1: Build polymer structure
- Select monomer
- Specify energetics (torsions & vdW)

Step 2: Perform MD simulations
- Pre-built structures
- Structures from builder
- LAMMPS parallel simulator from Sandia

Impact: 584 users from 10 countries have performed 13,000+ interactive simulations

Polymatic simulations @ nanoHUB in MSE curricula

Empowering educators & students

- Learning modules to facilitate simulation-powered curricula

References