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Problem: Scientists use software to analyze their 
data. Result reproducibility depends on the ability 
to run the software. Changing environments, 
extraneous dependencies, and large data sets 
makes software distribution / reuse a challenge. 

This material is based upon work supported by the National Science Foundation under Grant ACI-1440800. Any opinions, findings, and conclusions or 
recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. 

Current Approach: Tool to build self-contained 
software packages. Specify environment to 
minimize external dependencies. Use partial 
evaluation to winnow the codebase. Specialize 
with respect to target data to reduce package size.  
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The occam toolchain consists of two subsystems. One part utilizes the LLVM compiler framework
[28] for parsing the sources of the target program (and any libraries that it may use), defining the required
dependency analyses (as optimizer passes on the resulting LLVM intermediate representation), assembling
the necessary object code, and linking the components together. Since the analyses are performed on the
intermediate representation, occam can be used for target programs and libraries written in any of the dozen
languages for which an LLVM frontend exists, including C, C++, and Java.

Large software projects rely on sophisticated build systems for their compilation. Tools such as cmake
and autoconf automate the generation of scripts that configure the software build for the target environ-
ment; automake provides a portable way of creating the Makefiles that specify the build dependencies;
libtool simplifies the construction of static and dynamic libraries. However, none of these and dozens
of other tools in use are designed to emit LLVM bitcode, the intermediate representation upon which occam
analyses operate.

To allow such build systems to be used without modification, occam has a second subsystem that in-
terposes on all tool invocations. Each command is then natively executed, but is also mirrored by one that
performs an analogous LLVM tool operation. This subsystem is implemented as a collection of Python
scripts. It is designed to be as simple as possible to use. To build an LLVM bitcode version of a typical open
source application, the user can follow a familiar sequence of steps, prefixing each with occam:

> occam ./configure
> occam make
> occam make install

occam is robust enough [38] that we can build LLVM bitcode versions of all the programs included in
the base system of the FreeBSD 9.0 release simply by replacing:

> make buildworld

with:

> occam make buildworld

While occam currently only runs on FreeBSD 9.0, its primary dependencies are LLVM and Python. As
part of this project, we will extend occam so that it can be used on other systems that have mature ports of
LLVM and Python. This includes Linux, Android, and Mac OS X.

3 Simplifying the Software

When building a self-contained version of a target program, all of its dependencies must be included. In
principle, all the code present within an operating system distribution may be invoked and must therefore
be retained. Even code that is not currently reachable through function calls from installed applications,
libraries, kernel modules, or the core kernel itself, must be kept since external input from a user or the
network may implicitly define such an invocation. In practice, we can give up such extensibility in exchange
for being able to eliminate code for which there is no currently known use.

With the assumption that we can perform our analysis in a closed universe of code, the key to determin-
ing which code can be removed is to utilize knowledge available at the time the virtual machine image is
being assembled. In particular, application and operating system configuration metadata can be used to re-
solve which functionality in the code is redundant. Since there is a large volume of code that can be targeted
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for elimination, ad hoc manual inspection of programs is insufficient. A principled approach for analyzing
programs is needed.

Partial evaluation [15] offers a strategy for automating the process of pruning the codebase. It is an
optimization technique that uses knowledge of static inputs to generate a specialized version of a program
that only accepts the remaining dynamic inputs, as illustrated in Figure 3. A priori knowledge of inputs
allows the evaluation of some control flow choices and variable assignments prior to runtime, potentially
resulting in dead code that can be eliminated.

#include <math.h>

float compute_building_height(float building_distance){
float viewing_angle = pi/4;

float building_height =

compute_opposite(building_distance, viewing_angle);

return building_height;

}
float compute_opposite(float adjacent, float angle){

float opposite = adjacent

*

tan(angle);

return opposite;

}

Figure 3: In the code above, the height of a building is computed by multiplying its distance by the tangent
of the viewing angle. Since this requires a call to the tan() function, the entire math library libm must be
included. Partial evaluation allows the static viewing angle value to be used to create a specialized
version of the compute opposite() function, as shown below. Note that the tan() call is also replaced
with 1, which is the result of evaluating it with argument pi/4. Since a call to tan() is no longer necessary,
the math library can be eliminated from the specialized version of the program.

float compute_building_height(float building_distance){
float building_height =

compute_opposite_specialized(building_distance);

return building_height;

}
float compute_opposite_specialized(float adjacent){

float opposite = adjacent

*

1;

return opposite;

}

Early partial evaluation efforts focused on functional programming languages since the absence of side-
effects simplified the analysis [27]. However, since operating systems kernels, user space libraries, and
many system utilities are all written in C, we investigated available C partial evaluators that could be used
to simplify the deployment of self-contained software.

Two mature C partial evaluators are C-Mix/II [30] and Tempo [6]. Given our goal, it is worth noting
that C-Mix/II propagates context to each branch of a conditional (while Tempo does not), allowing further
specialization at the cost of increasing the code size. In contrast, Tempo tracks partially static variables
(as can occur with a struct or an array), the specific flows where variables depend on dynamic values, the
specific calling contexts in which arguments are dynamic, and whether return values are static, enabling
more precise specialization in principle.
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Use partial evaluation with 
respect to known inputs to 
prune program, dependencies.  
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Use LLVM compiler optimization for  
intra-procedural pruning and iteratively compute 
inter-procedural interfaces (specializing when 
possible) till fixed point reached. 

Preliminary Effort: Use package management to 
prune extraneous dependencies. Further refine 
using language-specific partial evaluation. 

Insert specialization directives for C-Mix/II, Tempo. 

Use package 
metadata to  
compute set 
that can be 
removed. 


